报告题目:The Vol-Det conjecture for highly twisted links
报 告 人: Andrei Vesnin 教授 (俄罗斯新西伯利亚索伯列夫数学研究所)
报告时间:2025年7月10日(星期四) 14:00-15:30
报告地点:数学科学学院114(小报告厅)
校内联系人: 李风玲 教授 联系电话:84708351-8515
报告摘要:In 2016 Champanerkar, Kofman and Purcell formulated the following conjecture: Let K be a hyperbolic knot. Denote its volume by vol(K) and its determinant by det(K). If K is alternating then vol(K) < 2 \pi log det (K). This conjecture is known to hold for all knots with at most 16 crossings, 2-bridge links, and closures of 3-strand braids. Here, we consider links with a reduced diagram containing more than eight twist regions. We prove an inequality relating to the number of crossings that guarantees the validity of the conjecture.
报告人简介:Andrei Vesnin教授,俄罗斯科学院通讯院士、托木斯克大学教授,新西伯利亚国立大学教授、俄罗斯科学院Sobolev 数学研究所应用分析实验室主任,主要从事双曲流形等方面的研究工作,是代数拓扑领域国际知名专家,多次承担国家研究基金项目,多次主办学术会议。