报告题目:Infinity Series Involving Harmonic Numbers
报 告 人:王晓霞 副教授(上海大学)
报告时间:2024年12月26日(星期四)15:30—16:30
报告地点:线上报告 会议ID:186-195-233
校内联系人:张文龙 副教授 联系方式:84708351-8606
报告摘要:By applying the derivative operator to the known identities from hypergeometric series or WZ pairs, we obtain serval series associated with harmonic numbers, including Sun’s five conjectural series. Specially, some of them are Ramanujan-like formulas for 1/π. By applying the Taylor expansion to hypergeometric formulae and then extracting the Taylor coefficients, we evaluate some infinite series involving harmonic numbers in closed form. Otherwise, we establish some results with their q-analogues.
报告人简介:王晓霞,女,副教授,大连理工大学理学博士,主要从事组合恒等式、q-级数恒等式、q-同余式等相关的研究工作。主持国家自然科学基金青年项目和面上项目各一项,上海市自然科学基金青年项目和面上项目各一项,截止目前,共发表SCI论文60余篇,主要发表在:Proc. Amer. Math. Soc.、Forum Math.、J. Math. Anal. Appl.、Ramanujan J.、Rocky Mountain J. Math.、RACSAM等国际高水平杂志上。