报告题目: Dynamics and Asymptotic Profiles of Steady States of an Epidemic Model in Advective Environments
报告时间:2018年10月12日(周四)10:30-11:30
报告地点:创新园大厦A1101
报告人:崔仁浩 (哈尔滨师范大学)
校内联系人:代国伟, 电话:84708351-8135
报告摘要:We study the dynamics of a SIS epidemic model of reaction–diffusion–advection type. We further consider the effects of diffusion and advection on asymptotic profiles of endemic equilibrium:When the advection rate is relatively large comparing to the diffusion rates of both populations, then two populations persist and concentrate at the downstream end. As the diffusion rate of the susceptible population tends to zero, the density of the infected population decays exponentially for positive advection rate but linearly when there is no advection. Our results suggest that advection can help speed up the elimination of disease. This is a joint work with Prof. King-Yeung Lam and Yuan Lou.
报告人简介:崔教授主要从事偏微分方程及其应用方向的研究,在异性空间中反应扩散系统的动力学行为方面的研究取得了一定的进展,在 J. Differential Equations 等学术刊物上发表论文多篇;主持国家自然科学基金青年项目、全国博士后基金及黑龙江省自然科学基金等项目;作为主要完成人获得黑龙江省科学技术(自然科学)二等奖一项,2018年获得黑龙江省数学会第二届优秀青年学术奖。