大连理工大学数学科学学院
通知与公告

【中国科学院数学与系统科学研究院】Creative Telescoping: Theory and Algorithms

2018年10月08日 14:52  点击:[]

报告题目:Creative Telescoping: Theory and Algorithms

报告人:   陈绍示 副研究员(中国科学院数学与系统科学研究院)

报告时间: 2018 10 10 日(星期三)下午 14:00-15:00

报告地点: 创新园大厦 A1101

校内联系人:陈曦 讲师      联系电话84708351-8025

 

报告摘要The method of creative telescoping is the core of Wilf-Zeilberger's theory for computer-generated proofs of identities in combinatorics and special functions. The key concept in this method is telescoper, which is a linear differential or recurrence operator. For a specific function, when does a telescoper of certain type exist? And how can one construct telescopers? These are two basic problems related to the method of creative telescoping. In this talk, I will give a survey on recent progress related to these two problems. One of the interesting aspects of Eulerian polynomials is the characterization as the moments of orthogonal Meixner polynomials. Motivated by the problems of total positivity and gamma-positivity of combinatorial polynomial sequences, I will present two recent generalizations from this perspective. Firstly we show a q-exponential generating function for Carlitz Scoville’s polynomials using inversion numbers of permutations. Secondly we find Stieltjes-type and Jacobi-type continued fractions for some master Eulerian polynomials that enumerate permutations. Our results contain many previously obtained identities as special cases.

 

报告人简介:陈绍示,主要研究符号计算,计算微分代数与代数组合学(Wilf-Zeilberger 方法,形式幂级数理论等),现为中国科学院数学与系统科学研究院副研究员, 博士生导师。2011年中国科学院与法国巴黎综合理工学校联合培养博士毕业,曾先后在奥地利 Linz 大学符号计算研究所、美国北卡罗来纳州立大学、加拿大菲尔兹数学研究所与滑铁卢符号计算研究组从事博士后工作。2013年回国到中科院数学与系统科学研究院系统所工作,2017年晋升为副研究员。先后主持国家自然科学青年基金,教育部留学回国人员科研启动基金,与国家自然科学面上基金。在符号计算领域权威杂志 Journal of Symbolic Computation》,代数核心杂志《Journal of Algebra, 应用数学重要杂志《Advances in Applied Mathematics 和组合数学权威杂志《Journal of Combinatorial theory, Series A》等期刊发表论文 20 余篇。获得国际符号与代数计算年会“ISSAC2014 杰出海报奖”和中国科学院数学与系统科学研究院“2014 年突出科研成果奖”。 入选中国科学院第七届“陈景润未来之星”人才计划和中国科学院2018年度青年创新促进会会员。

上一条:【哈尔滨师范大学】Dynamics and Asymptotic Profiles of Steady States of an Epidemic Model in Advective Environments 下一条:【澳大利亚科廷大学】Research Advice for Graduate Students

关闭