报告题目:$\alpha$-$z$-Renyi relative entropy related quantities and their preservers
报 告 人:齐霄霏 教授 (山西大学)
报告时间:2022年7月25日 15:30-16:30
报告地点:腾讯会议 会议号:522 553 195
邀 请 人:刘浏 教授
报告摘要 :Various quantum relative entropies play important roles in classical and quantum information theory. In this paper, we generalize the definition of $\alpha$-$z$-Renyi relative entropy from finite-dimensional quantum systems to infinite-dimensional quantum systems, give its some properties, and then determine the structure of all maps preserving $\alpha$-$z$-Renyi relative entropy on positive trace-class operators. In addition, we also study $\alpha$-$z$-Bures Wasserstein divergences based on $\alpha$-$z$-Renyi relative entropy on all positive trace-class operators, and give a complete characterization of all maps preserving $\alpha$-$z$-Bures Wasserstein divergences on the set of all positive trace-class operators and on the set of all positive invertible elements in the general finite C*-algebras, respectively.
报告人简介:齐霄霏,山西大学数学科学学院教授、博导。主要从事算子理论与算子代数,以及量子信息中量子关联等的基础理论研究。出版学术专著1部,在Journal of Functional Analysis,Science in China,Physical Review A,Science in China等知名学术刊物上发表学术论文100余篇。主持或完成国家自然科学基金项目4项、山西省优秀青年基金项目1项、其它省级项目2项,获山西省自然科学奖二等奖1项。曾获山西大学青年英才,山西省高校优秀青年学术带头人,山西省高校131领军人才工程-优秀中青年拔尖创新人才,三晋英才计划青年优秀人才,山西大学十佳青年教师等。