报告题目:Limit cycles and global bifurcations of some Lienard systems with $Z_2$-symmetry
报 告 人: 唐异垒 教授(上海交通大学)
报告时间: 2024 年 4 月 3 日(星期三)下午 15:00-16:00
报告地点: 线上报告 腾讯会议ID:810-612-251
校内联系人:衣凤岐 教授 联系电话:84708351-8118
报告摘要: In this talk, we present some recent results and methods for bifurcations and dynamics of limit cycles in planar Lienard differential systems with Z2-symmetry, including existence, uniqueness, exact number, stability and hyperbolicity of limit cycles. Moreover, using these results for the limit cycles together with other qualitative method and techniques, we can obtain the exact number of limit cycles and further obtain the global dynamics and bifurcations in some polynomial and oscillator Lienard systems.
报告人简介:唐异垒,上海交通大学教授、博导,主要从事常微分方程与动力系统的定性理论与分支理论的研究。先后到英国、西班牙、斯洛文尼亚、意大利、加拿大等国访问。现正主持国家自然科学面上基金、和重点项目子课题,参与重点研发项目;获得过欧盟玛丽-居里学者基金、国家科技部国际合作项目及上海科技创新行动计划项目资助。 研究结果发表在(期刊字母顺序). J. Differential Equations、J. Nonlinear Sci. 、Nonlinearity、Physica D、SIAM J. Appl. Math. 、SIAM J. Math. Anal.等多个国际期刊上。