ENGLISH

【哈尔滨工业大学数学研究院】Quantum differentiability on quantum tori and quantum Euclidean spaces

发布时间:2020年08月08日 11:19 浏览量:

报告题目Quantum differentiability on quantum tori and quantum Euclidean spaces

报告人:熊枭 教授 (哈尔滨工业大学数学研究院)

报告时间2020年8月13日(星期四)下午16:00-17:00

报告地点:腾讯视频会议(线上)

          会议ID:723 572 521 会议密码:202813

校内联系人:江永乐 联系电话84708351-8033

报告摘要The core ingredients of the quantized calculus, introduced by A. Connes, are a separable Hilbert space H, a unitary self-adjoint operator F on H and a C-algebra A represented on H such that for all a \in A the commutator [F, a] is a compact operator on H. Then the quantized differential of a \in A is defined to be the operator da = i[F, a]. We provide a full characterization of quantum differentiability in the sense of Connes on quantum tori T_{\theta}^d and quantum Euclidean spaces R_{\theta}^d. We also prove a quantum integration formula which differs substantially from the commutative case.
          Based on joint work with Edward McDonald and Fedor Sukochev

报告人简介:熊枭,2015年获得法国弗朗什-孔泰大学博士学位,现为哈尔滨工业大学数学研究院教授, 主要从事调和分析、非交换分析及其应用等方向的研究工作,已在Comm. Math. Phys., Mem. Amer. Math. Soc.,Indiana Univ. Math. J.,Adv. Math.,J. Funct. Anal.,J. Operator Theory等国际主流数学期刊发表论文多篇。

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 大连理工大学数学科学学院2024      辽ICP备05001357号