报告题目:Quantum differentiability on quantum tori and quantum Euclidean spaces
报告人:熊枭 教授 (哈尔滨工业大学数学研究院)
报告时间:2020年8月13日(星期四)下午16:00-17:00
报告地点:腾讯视频会议(线上)
会议ID:723 572 521 会议密码:202813
校内联系人:江永乐 联系电话:84708351-8033
报告摘要:The core ingredients of the quantized calculus, introduced by A. Connes, are a separable Hilbert space H, a unitary self-adjoint operator F on H and a C∗-algebra A represented on H such that for all a \in A the commutator [F, a] is a compact operator on H. Then the quantized differential of a \in A is defined to be the operator da = i[F, a]. We provide a full characterization of quantum differentiability in the sense of Connes on quantum tori T_{\theta}^d and quantum Euclidean spaces R_{\theta}^d. We also prove a quantum integration formula which differs substantially from the commutative case.
Based on joint work with Edward McDonald and Fedor Sukochev
报告人简介:熊枭,2015年获得法国弗朗什-孔泰大学博士学位,现为哈尔滨工业大学数学研究院教授, 主要从事调和分析、非交换分析及其应用等方向的研究工作,已在Comm. Math. Phys., Mem. Amer. Math. Soc.,Indiana Univ. Math. J.,Adv. Math.,J. Funct. Anal.,J. Operator Theory等国际主流数学期刊发表论文多篇。