ENGLISH

【重庆大学数学与统计学院】Sylvester Rank Functions on Crossed Products

发布时间:2020年08月10日 11:02 浏览量:

报告题目:Sylvester Rank Functions on Crossed Products

报告人:蒋报捷 博士后(重庆大学数学与统计学院)

报告时间:20208月14日(星期五)下午15:00-16:00

报告地点:腾讯视频会议(线上)

会议 ID:511 270 890 会议密码:202814

校内联系人:江永乐 联系电话:84708351-8033

报告摘要:Sylvester rank functions for a given unital ring $R$ are numerical invariants for matrices or modules over $R$, describing the rank or dimension of such objects.

Let $\mathcal{A}$ be a unital $C^*$-algebra and let $\tau$ be any tracial state on $\mathcal{A}$. Set $\mathrm{rk}_\tau(B)=\lim_{k\to\infty}\tau(|B|^{1/k})$ for every rectangular matrices over $\mathcal{A}$. Then $\mathrm{rk}_\tau$ is a Sylvester rank function defined on rectangular matrices over $\mathcal{A}$.

In this talk, based on joint work with Prof. Hanfeng Li, we focus on amenable group which admits a tracial preserving action on a unital $C^*$-algebra, we show that two natural Sylvester matrix functions on the algebraic crossed product constructed out of the tracial state coincide.

报告人简介:蒋报捷,2018年毕业于复旦大学数学院。现为重庆大学数学与统计学院博士后。研究方向:算子代数、粗几何、Roe代数等方向。已在J. Noncommut. Geom., J. Topol. Anal.等国际数学期刊发表论文多篇。

邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 大连理工大学数学科学学院2024      辽ICP备05001357号