报告题目:Sharp non-uniqueness for the 3D hyperdissipative Navier-Stokes equations: above the Lions exponent(上)
报告人:曲鹏 副教授(复旦大学)
报告时间:2022年6月17日(星期五)下午15:00-17:00
报告地点:腾讯会议 638-786-875
校内联系人:王文栋 教授 联系电话:84708351-8139
报告摘要: We study the 3D hyperdissipative Navier-Stokes equations on the torus. It is well-known that, due to Lions, for any L^2 divergence-free initial data, there exist unique smooth Leray-Hopf solutions when the viscosity exponent is larger than 5/4. We prove that even in this high dissipative regime, the uniqueness would fail in the supercritical spaces in view of the generalized Ladyzenskaja-Prodi-Serrin condition. This talk is based on the joint work with Prof. Yachun Li, Prof. Deng Zhang and Dr. Zirong Zeng.
报告人介绍:曲鹏,复旦大学数学科学学院副教授。主要从事偏微分方程的数学理论研究,在双曲守恒律、流体力学方程弱解等方面取得的成果曾发表在 Adv. Math., Arch. Rational Mech. Anal., J. Math. Pures Appl. 等国际知名期刊。曾获中国数学会钟家庆数学奖、中国工业与应用数学学会优秀青年学者奖。