ENGLISH

From complex models to dyadic methods: a real-variable approach to hypersingular operators

发布时间:2026年02月02日 03:25 浏览量:

报告题目:From complex models to dyadic methods: a real-variable approach to hypersingular operators

报告人:胡冰洋 助理教授 美国奥本大学

报告时间:20260204日(星期三)上午:900-1000

报告地点:腾讯会议870-584-845 会议密码:260204

校内联系人:程国正 教授   联系电话:84708351-8617


报告摘要:This talk consists of two parts. In the first part, we discuss the L^p theory for hypersingular maximal operators and the hypersingular Bergman projection, with an emphasis on estimates along the critical line where strong-type bounds typically fail. In the second part, motivated by the phenomena and methods from Part I, we develop a more general framework that applies to a broader class of hypersingular sparse operators. The key new ingredient is the Forelli-Rudin method, which provides a flexible mechanism for establishing weak-type estimates on the critical line. This talk is based on recent joint work with Xiaojing Zhou.


报告人简介:胡冰洋,美国奥本大学助理教授,2020年博士毕业于美国威斯康辛大学麦迪逊分校。主要研究方向为调和分析及其应用。已在Math.Ann, JFA, JMPA, IMRN, Math.Z, JFAA, JDE, CPDE等期刊发表论文40余篇。


邮编:116024

电话:0411-84708354

地址:大连市甘井子区凌工路2号

Copyright© 大连理工大学数学科学学院2024      辽ICP备05001357号