ENGLISH

Spectral theory for periodic vector NLS equations

发布时间:2025年10月10日 11:17 浏览量:

报告题目:Spectral theory for periodic vector NLS equations

人:Evgeny Korotyaev 教授东北师范大学

报告时间:20251021星期二14:0015:00

报告地点:数学科学学院114(小报告厅)

校内联系人:胡奕辰 助理教授     联系方式84708351-8204


报告摘要:We consider a first order operator with a periodic 3x3 matrix potential on the real line. This operator appears in the problem of the periodic vector NLS equation.  The spectrum of the operator covers the real line, it is union of the spectral bands of multiplicity 3, separated by intervals of multiplicity 1. The main results of this work are the following:

1)  The Lyapunov function on the corresponding 2 or 3-sheeted Riemann surface is described.

2) Necessary and sufficient conditions are given when the Riemann surface is 2-sheeted.

3) The asymptotics of 2-periodic eigenvalues are determined.

4)  One constructs an entire function, which is positive on the spectrum of multiplicity 3 and is negative on its gaps.

5)  The estimate of the potential in terms of gap lengths is obtained.

6)  The Borg type results about inverse problems are solved.

7) The solution of the periodic vector NLS equation for the case of the 2-sheeted Riemann surface  is described.


报告人简介:Evgeny Korotyaev,东北师范大学,前沿交叉研究院教授,圣彼得堡国立大学,数学-力学系教授,俄罗斯高等经济研究大学兼职教授。1982年于圣彼得堡国立大学获PhD学位,1996年于圣彼得堡Steklov研究所获理学博士学位。长期致力于逆谱理论与可积系统、几何函数论、散射理论、薛定谔算子等方向的研究工作,在Invent. Math., Commun. Math. Phys.,Trans. Am. Math. Soc., Inverse Probl., JFA, JDE等期刊发表学术论文150余篇。


邮编:116024

电话:0411-84708354

地址:大连市甘井子区凌工路2号

Copyright© 大连理工大学数学科学学院2024      辽ICP备05001357号