报告题目:李超代数的Stem扩张与上同调群
报告人: 刘文德教授 (哈尔滨师范大学)
报告时间: 2018年11月17日上午10:00-11:00
报告地点: 创新园大厦A1101
校内联系人:王颖 教授 联系电话 84708351-8020
报告摘要:Suppose that the underlying field is of characteristic different from 2, 3. We first prove thatthe so-called stem deformations of a free presentations of a finite-dimensional Lie superalgebra L exhaust all the maximal stem extensions ofL, up to equivalence of extensions. Then we prove that multipliers and covers always exist for a Liesuperalgebraand they are unique up to Lie superalgebraisomorphisms. We also show that the second cohomology group with coefficients in the trivial module is isomorphic to the multiplier for L. Finally, we describe the multipliers, covers and maximal stem extensions of Heisenberg superalgebras and model filiform Lie superalgebras.
报告人简介:刘文德教授主要从事模李超代数的分类、表示及李超代数上同调等研究。主持国家自然科学基金项目、黑龙江省杰出青年科学基金等,在国际学术期刊发表学术论文50余篇.