报告题目:L_0-isometries and determinant-preserving isomorphisms
报 告 人:黄景灏 教授(哈尔滨工业大学)
报告时间:2025年9月2日(星期二)10:00—11:00
报告地点:线上报告 腾讯会议ID:420-338-015
校内联系人:江永乐 副教授 联系方式:84708351-8503
报告摘要:The description of (commutative and noncommutative) $L_p$-isometries has been studied thoroughly since the seminal work of Banach and Stone. We provide a complete description for the limiting case, isometries on noncommutative $L_0$-spaces, which extends the Banach--Stone theorem and Kadison's theorem for isometries of von Neumann algebras. As an application, we show that a unital linear bijection $\phi$ between two $II_1$-factors is (Fuglede--Kadison) determinant-preserving if and only if it is an (algebraic) isomorphism or anti-isomorphism, which confirms a conjecture by Harris and Kadison (1996).
报告人简介:黄景灏,哈尔滨工业大学数学研究院教授,副院长,2019年在澳大利亚新南威尔士大学获得博士学位,2022年入选国家级青年人才计划。从事泛函分析Banach空间理论、非交换分析的研究,相关成果发表在JEMS、Adv. Math.、CMP、IMRN、Israel J. Math.、JFA、JLMS、TAMS等期刊上。