ENGLISH

A Gradient-Based Algorithm for Constrained Bilevel Optimization

发布时间:2025年05月22日 08:55 浏览量:

报告题目:A Gradient-Based Algorithm for Constrained Bilevel Optimization

人:张进 教授 (南方科技大学)

报告时间:2025523日(星期16:30-17:30

报告地点:数学科学学院111A      

校内联系人: 刘永朝 教授   联系方式84708351-8619


报告摘要:This talk presents new approaches and single-loop, Hessian-free gradient-based algorithms for solving a class of constrained bilevel optimization (BLO) problems, where the lower-level problem involves constraints that couple both upper- and lower-level variables. Such problems have recently attracted considerable interest in machine learning due to their wide applicability. However, the nonsmoothness introduced by the lower-level coupling constraints complicates the design of efficient gradient-based methods. To address this challenge, we introduce a smooth reformulation of the constrained lower-level problem based on a doubly regularized gap function. This reformulation transforms the original BLO problem into an equivalent single-level optimization problem with smooth constraints. Building on this reformulation, we develop a single-loop Hessian-free gradient-based algorithm for constrained BLO problems.  Numerical experiments demonstrate the efficiency of the proposed algorithm.


报告人简介:张进,南方科技大学数学系/深圳国家应用数学中心教授,从事最优化理论和应用研究,代表性成果发表在 Math ProgramSIAM J OptimMath Oper ResSIAM J Numer AnalInforms. J. ComputJ Mach Learn ResIEEE Trans Pattern Anal Mach Intell,以及 ICMLNeurIPSICLR 等最优化、机器学习期刊与会议上。


邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 大连理工大学数学科学学院2024      辽ICP备05001357号