报告题目:Character immanants and symmetric functions
报告人:杨立波 教授(南开大学)
报告时间:2022 年 4 月 24 日(星期日) 15:00-16:00
报告地点:腾讯会议
会议ID:655 747 183 会议密码:202204
校内联系人:陈曦 副教授 联系电话:84708351-8025
报告摘要: Goulden and Jackson conjectured, and Greene later proved, that immanants of Jacobi-Trudi matrices are polynomials with nonnegative integer coefficients. This led Stembridge and Stanley to formulate a series of immanant conjectures, including the well known (3+1)-free conjecture. In this talk we shall give an overview of Goulden and Jackson's conjecture and related results, and report some of our results on the character immanants of combinatorial matrices. This talk is based on the joint work with Ethan Li, Grace Li and Candice Zhang.
报告人简介:杨立波,南开大学教授,博士生导师。现任南开大学组合数学中心副主任。2011年入选教育部新世纪优秀人才,2015年获国家自然科学基金优秀青年基金项目资助。主要从事对称函数理论和单峰型理论方面的研究,现已在《Trans. Amer. Math. Soc.》、《Intern. Math. Res. Notices》、《J. Combinatorial Theory Series, A》、《Adv. Appl. Math.》、《SIAM Discrete Math.》等数学期刊发表30余篇论文,并获得多项国家自然科学基金项目资助。