报告题目:Graphs with girth 9 and no longer odd holes are 3-colorable
报 告 人:汪彦 副教授(上海交通大学)
报告时间:2023 年 12 月 23 日(星期六) 16:10-16:40
报告地点:海山楼(创新园大厦)B1212
校内联系人:毛建玺 副教授 联系方式:84708351
报告摘要: A For $l\geq 2$, let ${\cal{G}}_l$ denote the family of graphs which have girth $2l+1$ and have no odd hole with length greater than $2l+1$. Wu, Xu and Xu conjectured that every graph in $\bigcup_{l\geq 2} {\cal{G}}_{l}$ is $3$-colorable. Chudnovsky et al., Wu et al., and Chen showed that every graph in ${\cal{G}}_2$, ${\cal{G}}_3$ and $\bigcup_{l\geq 5} {\cal{G}}_{l}$ is $3$-colorable respectively. In this talk, we prove that every graph in ${\cal{G}}_4$ is $3$-colorable. This confirms Wu, Xu and Xu's conjecture.
报告人简介:汪彦,现任上海交通大学数学科学学院副教授。2017年博士毕业于美国佐治亚理工学院,师从国际著名图论专家郁星星教授。他获得上海市海外高层次人才计划,并主持国家重点研发计划青年科学家项目。他的研究方向是图论。他在JCTB、JCTA、JGT、SIAM等期刊发表论文十余篇。其工作包括与其导师郁星星等人合作证明了近四十年的公开问题Kelmans-Seymour猜想等。