报告人: 矫立国 苏州大学
报告题目:MPEC problems with polynomial data and SDP relaxations
报告时间:2020/12/4 (周五)下午3:00-4:00
地点:腾讯会议 ID: 219 674 290
报告校内联系人:郭 峰 副教授 联系电话:84708351-8088
报告摘要:
In this talk, we consider a mathematical program with equilibrium constraints (MPEC), where the objective and the constraint functions are all real polynomials. We present a method for finding its global minimizers and global minimum using a hierarchy of semidefinite programming (SDP) relaxations. The convergence result for our method is proved, and numerical experiments are also presented to show the efficiency of the proposed algorithm.
报告人简介:矫立国博士于2018年在韩国国立釜庆大学应用数学专业取得博士学位,目前在苏州大学数学院做博士后工作,其主要研究领域为非光滑分析,多目标规划及鲁棒优化等,在相关优化问题最优性条件及解的存在性等问题上做出了很多有意义的工作,目前已在国际杂志JOTA,JOGO等上发表论文10余篇。