ENGLISH

【伯明翰大学】Gibbs dynamics for weakly dispersive nonlinear Schrodinger equation

发布时间:2024年01月07日 20:59 浏览量:

报告题目:Gibbs dynamics for weakly dispersive nonlinear Schrodinger equation

人:王玉昭 副教授 (伯明翰大学)

报告时间:202418日(星期一) 8:45-9:45

报告地点:海山楼(创新园大厦)A1101

校内联系人:王文栋 教授   联系电话:84708351-8139


报告摘要: Bourgain-Bulut developed a new strategy for constructing weak global solutions to dispersive equations in low regularity regimes. However, it is not clear if the solutions constructed via their argument satisfy the flow property, which is crucial in applying the Poincare recurrence principle and answering Zakharov's question. In this talk, we use the weakly dispersive nonlinear Schrodinger equation as an example to showcase how the recently developed argument by Denng-Nahmod-Yue can help us recover the flow property.


报告人简介:王玉昭,博士毕业于北京大学,目前是伯明翰大学的副教授,2023年入选海外优青。主要从事偏微分方程的研究,发表30多篇学术论文。


邮编:116024

电话:(86)-531-88565657

地址:大连市甘井子区凌工路2号

Copyright© 大连理工大学数学科学学院2024      辽ICP备05001357号