学术报告
报告题目: Chemotaxis aggregation vs logistic damping in the minimal Keller-Segel model
报告时间:2018年5月17日(周四)9:30-10:30
报告地点:创新园大厦A1101报告厅
报告人:向田 (中国人民大学)
校内联系人:代国伟, 电话:84708351-8135
报告摘要:We study chemotaxis effect (chi) vs logistic damping (mu) on boundedness (and large time behavior) for the minimal Keller-Segel model with logistic source in 2- and 3-D smooth and bounded domains. We obtain qualitative boundedness on chi and mu: up to a scaling constant depending only on initial data and the underlying domain, we provide explicit upper bounds for the solution components of the corresponding initial-boundary value problem. These bounds are increasing in chi and decreasing in mu. In 2-D, the corresponding upper bounds have only one singularity in mu at mu=0. In contrast, in 3-D, the upper bounds, holding under a critical explicit relation between chi and mu (which has been shown to guarantee boundedness ), are defined for all chi and mu>const. chi, and, have two singularities in mu at mu=0 and mu=const. chi. It is worthwhile to mention that, in the absence of logistic source, the corresponding classical KS model is well-known to possess blow-ups for even small initial data. We hope that these qualitative findings presented here would produce some new principles on finite-time blow-up to chemotaxis systems with weak logistic damping sources.
报告人简介:向田,2014年5月博士毕业于Tulane University,偏微分方程专业,2014年9月至2016年8月在中国人民大学数学科学研究院做博士后,2016年9月起为中国人民大学副教授, 2018年起为硕士生导师。向田副教授的主要研究兴趣为非线性偏微分方程及其应用, 非线性分析以及动力系统;已在JDE, Nonlinearity等杂志上发表二十余篇论文,在第8届ICIAM上组织过一个研讨会。 其研究得到中央高校科研启动基金,博士后基金一等以及国家自然科学基金青年基金的资助。