报告题目:Basic hypergeometric series associated to the root systems and Mock Theta Functions
报告人:张之正 教授(洛阳师范学院)
报告时间:2023年8月18日(星期五)15:20-16:10
报告地点:海山楼(创新园大厦)A1101
校内联系人:王毅 教授
报告摘要:The theory of basic hypergeometric series consists of many known summation and transformation formulas. These basic hypergeometric series identities frequently appear in combinatorics and in related area such as number theory, physics, and representation theory of Lie algebras. Multiple basic hypergeometric series associated to the unitary groupAn(orU(n+ 1)),CnandDnhave been investigated by various authors. Many different types of such series exist in the literature. In this talk, we give
U(n+ 1) analogue of AAB Bailey lattice (Agarwal, Andrews and Bressoud) and its applications;
U(n+ 1),Cnand elliptic generalizations of WP-Bailey pairs and their applications;
A WP-Bailey lattices and itsU(n+ 1) analogue.
报告人简介:张之正,洛阳师范学院二级教授,博士毕业于大连理工大学,南开大学与南京大学双站博士后,河南省优秀专家,河南省学术技术带头人,河南省高校创新人才,河南省五一劳动奖章获得者,教育部国培专家,河南省教师教育专家,河南省百名技术英杰,河南省教育厅优秀教育管理人才;先后主持国家自然科学基金项目7项,其中面上项目5项,主要研究组合数学、特殊函数论等;为中国工业与应用数学学会全国竞赛工作委员会委员与图论组合及应用专业委员会副主任与编码、密码与相关组合理论专业委员会委员,中国运筹学会理事,中国数学会组合数学与图论专业委员会委员,河南省数学会副理事长,河南省高校数学教学指导委员会委员,洛阳市第十四、十五届人大常委会委员等。