报告题目:Sharp interface limit of the Navier-Stokes/Allen-Cahn system.
报告人:费明稳 (安徽师范大学)
报告时间:2022年1月20日(星期四)下午16:30-17:30
报告地点:腾讯会议 会议ID :239 839 076
校内联系人:王文栋 教授 联系电话:84708351-8139
摘要: We discuss the sharp interface limit of a coupled Navier-Stokes/Allen-Cahn system in a two dimensional, bounded and smooth domain, when a parameter $\varepsilon>0$ that is proportional to the thickness of the diffuse interface tends to zero rigorously. For sufficiently small times we prove convergence of the solutions of the Navier-Stokes/Allen-Cahn system to solutions of a sharp interface model, where the interface evolution is given by the mean curvature flow with an additional convection term coupled to a two-phase Navier-Stokes system with surface tension. This is done by constructing an approximate solution from the limiting system via matched asymptotic expansions together with a novel Ansatz for the highest order term, and then estimating its difference with the real solution with the aid of a refined spectral estimate of the linearized Allen-Cahn operator near the approximate solution. This is a joint work with Prof. Helmult Abels from University of Regensburg in Germany.
报告人介绍:费明稳,教授,博士生导师,安徽师范大学“文津学者”,安徽省学术和技术带头人后备人选,主要从事Navier-Stokes方程边界层和相场模型界面动力学等方面研究,先后主持国家自然科学基金和安徽省自然科学基金项目共4项,曾应邀访问新加坡国立大学、美国佛罗里达州立大学、美国佐治亚理工学院等,研究成果发表在Archive for Rational Mechanics and Analysis、Journal de Mathématiques Pures et Appliquées、Physica D: Nonlinear Phenomena、SIAM Journal on Mathematical Analysis、SIAM Journal on Applied Mathematics、Discrete and Continuous Dynamical Systems、 Pacific Journal of Mathematics、Peking Mathematical Journal等国内外重要期刊上。