报告题目: Oscillatory moving patterns in reaction-diffusion systems
报 告 人: 谢双全 副教授(湖南大学)
报告时间: 2024 年 3 月 12 日(星期二)上午 14:00-15:00
报告地点:线上报告 腾讯会议ID:510-263-994
校内联系人:衣凤岐 教授 联系电话:84708351-8118
报告摘要:Spatial localized patterns have been observed in diverse physical and chemical experiments. The modeling of these experiments often generates nonlinear reaction-diffusion (RD) systems that admit spatial inhomogeneous solutions localized in small regions. As prototyping models to produce well-localized solutions, several well-known two-component RD systems, such as the Gierer–Meinhardt model, the Gray–Scott model and the Schnakenberg model have been extensively studied. In this talk, I will report some studys on the Hopf bifurcations of spiky solutions in these two-component reaction-diffusion system。
报告人简介:谢双全,湖南大学数学学院副教授。武汉大学本硕,加拿大戴尔豪斯大学应用数学博士,曾任日本东北大学助理教授。主要从事与生物数学相关的建模和理论分析。在 Nonlineariy, SIAM Journal on Applied Dynamical System, Physica D: Nonlinear Phenomenon 等杂志上发表论文十余篇。