调和分析及其应用系列报告
报告题目: Characterizations of CMO spaces associated to Schrodinger operators and their application
报告人:宋亮 教授(中山大学)
报告时间:2022年5月27日星期五15:00-16:00
腾讯会议ID: 580 873 072
邀请人:李俊峰 教授, 吴素青 博士
联系方式:junfengli@dlut.edu.cn, wusq@dlut.edu.cn
报告摘要:Let $\L$ be a Schr\"odinger operator of the form $L=-\Delta+V$ acting on $L^2(\mathbb R^n)$ where the nonnegative potential $V$ belongs to the reverse H\"older class ${\rm RH}_q$ for some $q\geq (n+1)/2$. Let ${\rm CMO}_{L}(\mathbb{R}^n)$ denote the function space of vanishing mean oscillation associated to $\L$. In this talk, we will show that a function $f$ of ${\rm CMO}_{L}(\mathbb{R}^n) $ is the trace of the solution to $\mathbb{L}u=-u_{tt}+L u=0$, $u(x,0)=f(x)$, if and only if, $u$ satisfies a kind of Vanishing Carleson condition. This continues the lines of the previous characterizations by Duong, Yan and Zhang, and Jiang and Li for the ${\rm BMO}_{L}$ spaces, which were founded by Fabes, Johnson and Neri for the classical BMO space. For this purpose, we will prove two new characterizations of the ${\rm CMO}_{L}(\mathbb{R}^n)$ space, in terms of mean oscillation and the theory of tent spaces, respectively.
This is a joint work with Dr. Liangchuan Wu.
报告人简介:宋亮,中山大学教授。 2001年获中山大学学士学位,2006年获中山大学博士学位,同年留校任教。 2017年获聘中山大学数学学院教授。 主要从事调和分析函数空间理论及均匀化理论方面的理论等方面研究。 他与合作者得到了:(1)与一般的微分算子相联系的Hardy空间的极大函数刻划;(2)发展了与微分算子相联系的VMO空间及其对偶理论;(3)证明了非光滑区域上Maxwell型椭圆方程的一致Lp估计。已在Adv. Math.,ARMA, J. Funct. Anal.等国际著名数学期刊上发表多篇论文,引起国内外同行的关注。2016年入选国家优青项目基金。