报告题目:D-finiteness, Rationality, and Height III: Multivariate Pólya-Carlson Dichotomy
报告人:陈绍示 副研究员(中国科学院数学与系统科学研究院)
报告时间:2023 年 6 月 15 日(星期四) 15:15-16:00
报告地点:海山楼(创新园大厦)A1101
校内联系人:陈曦 副教授
报告摘要: We prove a result that can be seen as an analogue of the P\'olya-Carlson theorem for multivariate D-finite power series with coefficients in $\bar{\mathbb{Q}}$. In the special case that the coefficients are algebraic integers, our main result says that if $F(x_1,\ldots,x_m)=\sum f(n_1,\ldots ,n_m)x_1^{n_1}\cdots x_m^{n_m}$ is a D-finite power series in $m$ variables with algebraic integer coefficients and if the logarithmic Weil height of $f(n_1,\ldots, n_m)$ is $o(n_1+\cdots +n_m)$, then $F$ is a rational function and, up to scalar multiplication, every irreducible factor of the denominator of $F$ has the form $1-\zeta x_1^{q_1}\cdots x_m^{q_m}$, where $\zeta$ is a root of unity and $q_1,\ldots ,q_m$ are nonnegative integers, not all of which are zero.
报告人简介:陈绍示, 现为中国科学院数学与系统科学研究院副研究员, 博士生导师。主要研究符号计算,计算微分代数与组合数学。2019年与合作者解决了组合中的Wilf-Zeilberger猜想,并发展了组合恒等式机器证明的第四代算法。近几年主要研究多变元幂级数的算术理论。目前担任Annals of Combinatorics, Journal of Difference Equations and Applications, ACM Communications in Computer Algebra, Maple Transactions, Journal of Systems Science and Complexity, 和《系统科学与数学》等杂志编委,并担任ACM SIGSAM (国际符号与代数计算专业委员会) 秘书长与中国数学会计算机数学专业委员会秘书长. 曾获得第二届 “吴文俊计算机数学青年学者奖”(2019),第46届国际符号与代数计算年会(ISSAC2021)“杰出论文奖”,与国际计算机代数应用大会(ACA2022)“青年学者奖”。