学术报告
报告题目:Some recent results on strongly indefinite variational problems
报告人:丁彦恒 教授(中科院数学与系统科学研究院)
报告时间:2017年7月11日(星期二)上午9:30-10:30
报告地点:创新园大厦A1101
校内联系人:韩志清 教授电话:84708351-8119
报告摘要:Consider the general nonlinear system
, where
is a Hilbert space,
is a self-adjoint operator, and
is a (nonlinear) gradient operator. Typical example are Dirac equations and reaction-diffusion systems where
(the spectrum) is unbounded from below and above, and particularly,
. The talk focus on
1. to establish general variational setting by using the operator interpolation theory;
2. certain critical point theory;
3. the existence, concentration and exponential decay for semi-classical solutions of Dirac equation and the reaction-diffusion systems, etc.;
4. bifurcation of Dirac equation on spin manifolds.
报告人简介:丁彦恒 中科院数学与系统科学研究院研究员,博士生导师,2008-2011中国数学会常务副秘书长、德国洪堡学者、ICTP高级学者,主要从事非线性泛函分析、变分方法、Hamilton力学、流形分析、偏微分方程的研究。培育了强不定问题变分方法的特色研究方向,开启对Dirac系统半经典解的存在性与集中现象的研究。相继主持国家基金委两项重点项目。