报告题目:Spanning trees containing edges of a given forest in a graph
报 告 人:晏卫根 教授 (集美大学)
报告时间:2024年11月26日(星期二) 14:00-15:00
报告地点:线上报告 腾讯会议:468-479-971
校内联系人: 王毅 教授 联系方式:84708351-8620
报告摘要:Moon's classical result in [1,2] implies that the number of spanning trees containing a given spanning forest in a complete graph equals , where is the number of components of , and are the numbers of vertices of component of . In [3], Dong and Ge extended the Moon’s result to the complete bipartite graph. In this talk, we will introduce some of our results on enumeration of spanning trees containing a fixed spanning forest in some graphs.
This is joint work with Wuxian Chen and Danyi Li.
[1] J. W. Moon, Counting labelled trees, William Clowes and Sons, Limited, London and Beccles, Canadian Mathematical Congress, 1970.
[2] J. W. Moon, The second moment of the complexity of a graph, Mathematika, 11 (1964), 95-98.
[3] F. M. Dong, J. Ge, Counting spanning trees in a complete bipartite graph which contain a given spanning forest, J. Graph Theory, 101 (2022), 79-94.
报告人简介:晏卫根,集美大学教授、博士生导师。2003年7月获厦门大学理学博士学位,2004年10月至2006年12月在“中央”研究院(台湾)从事博士后研究工作。主要从事组合与图论及其在统计物理中的应用方面的研究工作,在Journal of Combinatorial Theory Ser. A、Journal of Graph Theory、Advances in Applied Mathematics等国际期刊上发表学术论文70多篇。已获多项国家自然科学基金面上项目的支持。