报告题目:On the Erdos-Ko-Rado theorem and the Kruskal-Katona Theorem
报 告 人:王军 教授(上海师范大学)
报告时间:2024年10月23日(周三) 16:00-17:00
报告地点:数学楼114
校内联系人:毛建玺 副教授 联系方式:84708351-8604
报告摘要:In the late 1960's, Kruskal and Katona solved independently an isoperimetric problem in the high-dimensional simplex. A general Kruskal-Katona-type problem on graphs is to describe subsets of the vertex set of a graph with minimum number of neighborhoods with respect to its their own sizes. We report a few of Kruskal-Katona-type theorems for graphs, especially for the derangement graph of the symmetric group on a finite set. With this theorem we deduce the size and structure of the first three maximal intersecting families in the symmetric group, where the first was given by Deza-Frankl and Cameron-Ku; the second was conjectured by Cameron-Ku. With this theorem we also determine the maximum product of two cross-intersecting families in the symmetric group under various conditions.
报告人简介:王军,上海师范大学数理学院教授, 曾任中国数学会组合与图论专业委员会副主任(2006-2018)以及上海师范大学数理学院学术委员会主任等职。主要的研究领域是组合数学,特别是有限集及有限偏序集的组合学,解决了其中一些引人注目的问题和猜想。曾多次参加或主持国家级和省部级自然科学基金项目,曾被选为辽宁省百千万人才工程百人层次人选并享受政府特殊津贴。