报告题目:Monochromatic infinite sumset structures on N
报 告 人:连政星 副教授(厦门大学)
报告时间:2024年9月29日 (周日)11:10-11:40
报告地点:数学楼115(大报告厅)
校内联系人: 崔建楠 联系方式:84708354
报告摘要: In combinatorial number theory, searching for certain structures in monochromatic subsets, positive upper (Banach) density subsets and subsets with diverging reciprocal sum is a central topic.
Under the influence of some related research, we seek to look for monochromatic infinite additive structures involving polynomials on N.
By using some methods of dynamical systems, we can prove that for any positive integer r, any distinct natural numbers a, b and any 2-coloring of N, there exist subsets of positive integer numbers B, C with |B|=r and |C| infinite such that there exists a color containing B+aC and B+bC. In fact, for the specific question considered by us, we give a complete answer.
报告人简介:连政星,厦门大学数学科学学院副教授,博士毕业于中国科学技术大学数学学院,曾在加拿大阿尔伯塔大学,波兰科学院数学所进行博士后研究。主要研究方向是拓扑动力系统及遍历理论, 特别是研究动力系统在数论相关问题上的应用。已在 Adv. Math., J. Funct. Anal., Israel J. Math., ETDS, JDE 等期刊发表学术文章。