报告题目:On Cartan subalgebras of $II_1$ factors arising from Bernoulli actions of weakly amenable groups
报 告 人:丁长缨(美国加州大学洛杉矶分校)
报告时间:2024年6月13日 星期四 上午 10:00-11:00
报告地点:腾讯会议(线上) 会议ID:240-464-481 (密码:240613)
校内联系人:江永乐 副教授 联系电话:84708351-8033
报告摘要:A conjecture of Popa states that the $II_1$ factor arising from a Bernoulli action of a nonamenable group has a unique (group measure space) Cartan subalgebra, up to unitary conjugacy. In this talk, I will discuss this conjecture and show that it holds for weakly amenable groups with constant $1$ among algebraic actions. The proof involves the notion of properly proximal groups introduced by Boutonnet, Ioana, and Peterson.
报告人简介:丁长缨, 美国加州大学洛杉矶分校博士后(博士导师:Jesse Peterson教授, 博士后导师: Sorin Popa教授). 主要研究方向为算子代数. 论文发表在 Duke Math. J.、 Comm. Math. Phys.、Adv. Math.、Groups Geom. Dyn. 等国际期刊上.