Feature extraction of EEG and ECG for automated physiological disorder detection-大连理工大学数学科学学院(新)
大连理工大学数学科学学院
通知与公告

Feature extraction of EEG and ECG for automated physiological disorder detection

2017年11月22日 09:45  点击:[]

学术报告

报告题目Feature extraction of EEG and ECG for automated physiological disorder detection

报告人:张瑞 教授   西北大学数学学院

报告时间:20171125日(星期六)上午9:00

报告地点:创新园大厦 A1101

报告校内联系人:杨洁 副教授   联系电话:84708351-8205

报告摘要:There has been an increasing interest in the study of the automated physiological disease detection in recent years. It could greatly reduce the burden of traditional visual inspection of medical images (e.g. EEG, ECG, MRI, X-ray etc.) by experienced physicians and deliver diagnostic services at lower cost. Commonly, it is a kind of pattern recognition problems and how to design an appropriate feature extraction method is recognized to be crucial in the successful realization. In this talk, focusing on two physiological disorders: epilepsy and atrial fibrillation (AF), we mainly introduce the automated seizure detection based on EEG and AF detection based on ECG. We first systematically introduce the background and development of seizure and AF detection methods respectively; And then, some novel EEG and ECG feature extraction methods we proposed are presented, which can be categorized into nonlinear-similarity based feature, nonlinear-interdependency based feature and nonlinear-complexity based feature; Finally, our main directions in the research of medical data analysis and neural mass modeling are given.

 

报告人个人简介:张瑞,女,教授,博士研究生导师,陕西省中青年科技创新领军人才,西北大学医学大数据研究中心主任。分别获西安交通大学应用数学专业理学博士学位与新加坡南洋理工大学电子电气工程专业工学博士学位。2004.08-2005.01赴美国伊力诺依大学数学系访问交流,2013.08-2014.08赴美国哈佛医学院及麻省总医院访问交流。目前主要从事机器学习理论及算法、医学数据分析与处理、神经集群建模等方向的教学与科研工作。已在国内外重要杂志和国际学术会议上发表学术论文30余篇,主持国家自然科学基金、陕西省自然科学基金等项目5项,以第一完成人获陕西省科学技术奖二等奖1项。

 

上一条:On the Nonplanar Travelling Fronts in a Periodic Shear Flow 下一条:On growth conditions for uniform asymptotic stability of damped linear oscillators with time-varying coefficients

关闭