On growth conditions for uniform asymptotic stability of damped linear oscillators with time-varying coefficients-大连理工大学数学科学学院(新)
大连理工大学数学科学学院
通知与公告

On growth conditions for uniform asymptotic stability of damped linear oscillators with time-varying coefficients

2017年11月20日 16:17  点击:[]

学术报告

 

告题目On growth conditions for uniform asymptotic stability of damped linear oscillators with time-varying coefficients

报告人Professor Jitsuro SugieShimane University, Japan

报告时间:20171121日(星期二)下午4:00-5:00

报告地点:创新园大厦A1101

校内联系人:卢玉峰 教授      联系电话:84708352

 

报告摘要:This talk clarifies the relationship between some sufficient conditions which guaranteethat the equilibrium of the damped harmonic oscillator

$$x’’ +h(t)x+\omega^2 x=0$$

is uniformly asymptotically stable, where $h:[0,\infty)\to [0,\infty)$ is locally integrable.Those conditions work to suppress the rapid growth of the frictional force expressedby the integral amount of the damping coefficient $h$. The obtained sufficient conditions are compared with known conditions for uniform asymptotic stability. A relationship diagram is shown to facilitate understanding of the  conditions. By giving a concrete example, remaining problems are pointed out.

报告人简介:Jitsuro Sugie(杉江实郎),日本岛根大学教授,19903月在东北大学理学部数学科获得博士学位。主要研究领域有常微分方程、动力系统、差分方程、生物数学等。在SIAM J. Appl. Math. Proc. Amer. Math. Soc. J. Math. Anal. Appl. Nonlinear Anal Appl. Math. Compt.等杂志发表论文100余篇.

上一条:Feature extraction of EEG and ECG for automated physiological disorder detection 下一条:An asymptotic distribution theory for Eulerian recurrences

关闭