大连理工大学数学科学学院
通知与公告

Digraph Clustering and Some Minimax Properties in Digraphs

2017年06月07日 10:53  点击:[]

学术报告

报告题目:Digraph Clustering and Some Minimax Properties in Digraphs

报告人:赖虹建 教授     美国西弗吉尼亚大学

报告时间:201768日(星期四)上午 10:00 -11:00

报告地点:创新园大厦 A1138

报告校内联系人:王毅  教授     联系电话84708351-8128

报告摘要: Given a digraph D, how do we know if D contains a highly connected subdigraph? This research investigates the maximum subdigraph arc strong connectivity. Extremal and minimax properties related to the maximum subdigraph arc strong connectivity are studied. A digraph D is k-strength maximal if every subdigraph of D has arc strong connectivity at most k but adding any arc will result in a subdigraph with arc strong connectivity at least k+1. We obtained best possible upper and lower bounds of the size of a k-strength maximal digraphs. A minimax property related to investigate the maximum subdigraph arc strong connectivity is found, leading to an algorithm that determines the maximum subdigraph arc strong connectivity in polynomial time.

报告人简介:赖虹建,美国西弗吉尼亚大学教授,博士生导师。19888月获美国维恩州立大学理学博士学位。长期从事离散数学的教学和科研工作,主要研究方向为图的哈密顿问题,染色理论,以及相关的整数流和群连通问题。主要工作有:解决了由 Douglas Bauer 1985年提出的两个关于哈密顿线图的公开问题;解决了 Broersma Veldman 提出的关于s-哈密顿线图公开问题;近期又证明了 Cioaba Wong 的一个关于边不交支撑树和特征根之间关系的猜想。在《Journal of Combinatorial Theory, Series B》、《SIAM J.of Discrete Mathematics 、《J. Graph Theory》等国内外权威期刊发表学术论文多篇。

大连理工大学数学科学学院

201765

 

上一条:Assessment and Mitigation of Systemic Risk in Financial System under Uncertainties 下一条:Edge-Preserving Regularizations for tomography reconstruction in Mesh Domain

关闭